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A special class of integral equations of the first kind with irregular difference kernel of 
complex structure dependent on a nondimensional parameter h is considered. The asympto- 
tic solution of this inte 
in powers of k-1 and In 

al aquation is constructed for large values of x as a double series 
f. 

The obtained results are utilized to study axisymmetric problems of the interaction bet- 
ween a stiff belt and the surface of an infinite elastic cylinder, as well as the interaction 
between a stiff bushing and the surface of an infinite cylindrical cavity in elastic space. 

Finally, under the customsry assumptions of Hertz theory, the problem of interaction bet- 
ween an elastic belt and infinite elastic cylinder is examined on the basis of the solution 
of the first two problems. 

I. Investfgstion of the structure of the solution of the integral 
equation and construction of the asymptotic solution for large vaf- 
ues of the parameter A. Let us consider an integral Eq. of the form 

. 

~(~)=lnlyl~~(y)i_IyIf;2(yf+~a(y) (1.21 
The functions F, fyi will be continuous witb all their derivatives for all values - 2/X,< 

NY < = (% - :)/ii< 2/x and will behave as O(y 2) for y + 0. 
Hence it follows that the function F(ylE H ?(- 1, 11, 0 <Q < 1 whereH a 

notes the space of functions whose a-th deriva trl 
ponent Q for 1x14 /3. 

vc satisfies the Bb’lder con 
a f- p, fil de- 

ition with ex- 

We shall moreover assume that f(x) e Ho?- 1, 11, d > 0, p 31. 
Following [I], 1 t 

kind 
e us represent (I.11 ES an equivalent integral eqnation of the second 

’ f’(1) r/i=% 

I t-x dt +$i <y dt j (aaosgn(t-y) + 

-1 -I -1 
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+xF@+)) h ;++ dy, o(x)=(P(x) )/l--.r (1.3) 

The quantity p is determined either from the condition of compliance with the solution 

of (1.1) found from (1.3), or equivalently, by meaus_;f the Fomulafll: 
(1.4) 

1 
P= In z h + a30 @O’t 

wherein 

(1.5) 

Now, let us prove that if the solution of (1.1) in the class L (- 1, 1) exists then the 
function o(x)E C (- 1, 1) holds for any value of XE (0, w). To do this, it is evidently 
sufficient to prove that the integral operator in the right-hand side of (1.3) operates from the 
space C (- 1, 1) into C 

It has been shown in 

? y(t) VI -I!2 
J (xl = \ t-x dtEC,(--,I), ecnw T(t)EH,a(-l,l), a>0 (1.6) 

-1 

On this basis, we may conclude that 

P - 
ax 

-dt++~@?&jF;(~)v~ (1.7) 

---dyEC(-I,1 

-1 -1 -1 
- y” 

if the above-mentioned properties of the functions f( x and F(r) are taken into account, and ) 
it is also assumed that o(t) EC (- 1, 1). Hence, it remains to be shown that 

’ I :y & ‘sgn(t-y) O(y) s VI--Y2 
dyEC(--191) 

-1 -1 

if o (y)E C (- 1, 1). To do this, let us rewrite the inner integral in (1.8) as 

(1.8) 

t 1 

N (t) = 2 _l vu&A dy - _1 vz dy 5 5 (1.9) 

Evidently 

N’(t) = 20 (t) (1 - tw* 

which means that 

N (t) E I&= (-i,l),a = ‘/s 

Hence, the validit of the condition (1.8) follows on the basis of (1.6). It has therefore 
been proved that o (x{e’C (- 1, 1). 

Let us turn to the construction of an asymptotic solution of the integral Eq. (1.1) for 
large X, or equivalently, of (1.3). Let us expand the functions F,(t) (i = 1, 2, 3). in (1.2), in 
power series in the neighborhood of t = 0 thus: 

Ft (t) = Qj,l~ + alp + sip + . . . (1.10) 

Let the radii of convergence of these series be p,, respectively. Then all that follows, 
based on (l.lO), will have meaning at least for 

1> 2-l lnf pi 11.11) 

Let us substitute Fi (t) in the form (1.10) into (1.2), and then (1.2) into (1.3). Let us seek 
the solution of (1.3) as 

0 (2) = 5 2 o,*(x) h-m Ino h (1.12) 
m-o TI=” 

Substituting (1.12) into (1.3) and equating terms on the right- and left-hand sides, which 
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are of identical powers in n-1 and InA, we obtain expressions for omn Cz) for all n > [m / 21 
(here [y] is the integer part of r) as follows: 

-I- a~ sgn (1 - z) 080 (“r) + 3~81 (t -- f)2 sgn (t - t) 000 (r)l 
dT 

- 
1/l -TZ 

+u20sgn(t 
dz 

-T) 027 (r)l v1--2 etc. 

Let us limit ourselves to the consider&ion of the important particular case f(z) = 6 = 
= const. Successively evaluating the quadratures in (1.13), we will have 

c1‘01 (z) = n-1 P, wlc (z) I 4n-3a.&!71 (2) 

020 (2) = n-‘P I& (9/s - 1~12) + as1) (l-2 r2) + 32n-%~20~(S~ (CC) - D) 
(1.34) 

Wt1 Irf = -n-l Paz, (l--3zy, 031 (r) = -2~-3~,,~30S, (2) 

w3o (2) = Pn-3{*lgal~c2$3 (2) + 16~2, (1 + 2r2) - 12EW4azo3 DI S1 (2) + 

+ I%U + 2 @I, t3/z 
Here PI 

- ln2) + QS&~~I S, (2) -j- T3ap, -+- 64~~~~~~ S, (~$1 

S, (@ = (4 - 2%%) f 2 0.15) 

sin [(2k + 3) arc cos 21 
kio (Zk + $)2 (2k + 3)s (2k + 5)a 

iJr(l 

1-Z 
-Zz")$- x(i -z2)ln $ + r , 

+?=z 

S,(5)= y S5(x)=j 

-1 

t_-r dj ;=2. 

Ulk+z (x) = - 2 (1 - 2x?) UW (2) + 16k / (4kz - 1) - trZk-2+) 

l---z 
Uo(z)= 0, ut(zf=4+2=1n G 

*) The eerier in the expression for Sl(x) are tabulated in [2], 
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Therefore, an asymptotic soIntion of the form (1.12) to O(h-‘) accuracy has been ob- 
tained for the case f(x) = & 

The series in (1.15) may be tabulated with respect to x once and forever. AS computa- 
tions with au error not exceeding 0.7% have shown, the function S2 fd may be repleced for 
aB xE [- 1, l] by Expression: 

&* (2) = (0.4356 + 0.1321 x2 + 0.2494 x In &$) (1 -x9) (1.16) 

It should be noted that by thus approximating S,(z) we do not alter the character of its 
structure because, as is easily seen, the function S&v) has the form 

1 
fl (4 f fz (3) hJ 

l--S 
-py 1 (f --29 

Here ftb) and fi( x are continuous functions for xE [- 1, 1). Using (1.16), we obtain ) 
the following approximate expression for S&x): 

ss* (2) = 0.3547 
2-x 

- 0.8463 ~2 IO+ 0.3442 za + x (1 - 22) In 1 x 

1-z (1.17) 
x (0.1180 + 0.03305 rZ) -0.04156(1-xx)r lnr~ 10 + 0.30265; (x) 

Finally, utilizing (1.4) end (1.14) to (1.17), we obtain for P for the case f(x) =L 6: 
n6P’ = inU [I --al&-” + 0.1801 alla&M9 + 0 (Ad)] $ a, + 0,8106a&-r + 

+ (a,, + @I1 - 0.03287 a202)h-2 + (1.18) 

+ (1.442 uSt - 0,2?02 ~rriz+,, - 0.1807 ajlnZn - 0.02450 a&‘) h-3 + 0 (A-*) 

2. Axisymmetric contact problems for an infinite circular elastic 
cyIiader and an eIastic space with an infinite circular cylindrical 
cavity. Let us consider the problem of interaction between a stiff belt and the surface of 
a cylinder, and between a stiff bushing and the surface of a cavity. Let us assume friction- 
al forces are absent in the contact domain, and a loed absent outside the contact domain, 

By operational calculus methods the problems mentioned may be reduced to the determin- 
ation of the contact pressures q(t) from the integral equation [3 to 5]: 

(2.1) 

Here u is half the belt or bushing width, R the radius of the cylinder or cavity, y is the 
value of penetration of the belt or bushing into the surface of the cylinder or the cavity. The 
kernel K(t) has the form 

K (t) -= O” L(u) s 7 cos ut du. 
t-3 

t=- 
H 

0 

for the problem (u) of interaction between a belt and the surface of a cylinder 

L(u) = [us(Q,~-- i)- 2 (1 - v)]-'u (Q, (4 = 10 (4 II, 

(2.2) 

(u)) (2.3) 
for the problem (6) of interaction between a bashing and a cavity surface 

L (24) = [u2(i - Q,2) + 2 (1 - v)]-1 u (a, (4 = Ko 04 fKx (UN 
Here J-, (s), II(u) and K (u), Kt(s) are the Weber and Macdonsld functions. 

(2.4) 

It is easy to see that %e functions L(u) defined by (2.3) aud (2.4) for large valaar, may 
also be represented by the following asymptotic expausions: 

L (u) = 1 f qu-’ + cru-’ + csu-* + f? (rq 
Let us present the values of the constants et for X- 0.3 

(2.5) 

For problem (of 
c, = 0.4000, + = - 1.285, oo = --1.452 

For problem (b) 
c, =1 - 0,400O 

Now if the integrals 
e, = - 0,965 c3 = 1.986 
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02 M) 

-lnltl= du, du (2.6) 

0 0 

are used, theu the kernel K(t) may be represented as: 

K(t)=-ln111- ‘/a W 11 1 +l/sCd3In I t I - 314 cd2 + 'haslcs 1 t I3 t 

+3~~u3~(u)-ua-CIy3-C3~-C3]~~s~~ f u3e-u + ClZG-- (2.7) 

0 

( 

1 
- cqu 2 uwe-~ -I)-c+~ -A)}$ 

We hmce abin the following asymptotic representation for the kernel K(t) for small t 
(or eqdvslentiy, for large A= R/a): 

K (t) = - 14 t I + 4 t I + a30 + W2 lnl t I + dslta + 4 t I” (2.8) 

Here 

Calculations yield 

For problem (u) (v =I 0.3) 

+a = - 0.628, cill = - 0.642, alLl = - 0.380, us0 = -0.552, a31 = 1.501 

For problem (b) 

a2o = 0.628, a11 = - 0.482, a*1 = 0.520, i$J = - 0.459, a313 - 0.336 

Let us interchange the vsrisbles in (Ll), and let us introduce the notation: 

7 = at, z = ax, 4 W = 9 (t)z @la==8 (2.10) 

Then taking (2.8) into acoDunh (2.1) takes the form (Ll), (1.2) and (1.10). 

Thue it follows that the asymptotic solution, for large A, of the considered contact prob- 
lams is given by (1.14) to (1.18). It should still be noted that 

n 

Q= f q(t)& --ai-’ (2.11) 

--a 

To verify the results obtained herein, and to elucidate the limits of their application, 

approximate solutions of the considered contact problems were obtained for v = 0.3 by a 
method expounded in 141: 

For problem (a) 

(A = 2) 
(h = 4) 

For problem (b) 

(h = 2) 
(h = 4) 

Given for comparison pin 
end (2.13), (2. 121, Judging by the data presented, 

w (2) z S (1.229 - 0.421S $ 0.0901 ~4) 

0 (x) = 6 (0.688 -- 0.0847 22 -j- o.K!4:S $4) (2.12) 

o (z) = 6 (0.934 - 0,182 x2 - 0.0517 a4) 

o (z) = 6 (0.605 - 0,0634r2- 0.?213 ti) (2.13) 

Table 1 are som; results of computations utilizing (1.14) to 
(1.18) 
herein 

8010 tion obtained 

(2.14) 

i! 
ieids good resufts for the considered contact problems for all vaIues of the parameter h E 
2, oo]. The greatest discrepancy, reaching 556, is observed for A= 2. 
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Table 1 

A 

b (l.w+).18) 0.988 
0.931 

C (3.3) 1.026 
(3.4) 1.062 

I 4 

0.686 1.075 0.667 0.923 0.627 1.038 
0.688 1.129 0.668 0.898 0.628 1.053 

0.603 0.888 0.586 0.666 0.520 0.803 
0.605 0.882 0.588 0.697 0.520 0.821 

0.642 0.961 0.624 0.762 0.571 0.894 
0.643 0.990 0.625 0.786 0.570 0.922 

0(0,5)W o(i)6-’ P(xS)-’ 

0.653 
0.655 

8% 

0.606 
0.607 

3. Axisymmatric problem of interaction between an elantic belt 
and an infinite elastic circular cylinder. Let us consider the problem of in- 
teraction between an elastic belt of radius R* and the enrface of an elastic cylinder of ra- 
dius R = R+ + 8(&/R < 1). Let the elastic constants of the belt and the cylinder be E, Y 
and E”, v+, respectively. We assume’ that there are no friction forces between the surfaces 
of the belt and the cylinder, and the cylinder surface is not loaded outside the belt. The 
condition for contact between the belt and cylinder may evidently be written as 

u (R, 2) - u (R*, 2) = - E, IrIGs (3.1) 

where u(R, z) is the radial displacement of points of the cylinder surface, u(R*, t) the ra- 
dial di lacement of point of the belt surface, and a is half the belt width. In the contact 
domain “p z] \< u an unknown contact pressure q(z) acts. Let us formulate the problem of do 
termining this pressure. 

No- as is done in the well-known Hertz theory of contact between two elastic bodies, 
let us assume that the radial displacements of the belt surface due to the pressure q(r) may 
be approximated with sufficient accuracy by radial displacements of the surface of an infin- 
ite cylindrical cavity of radius R in an elastic space due to the same pressure. Then, by 
utilizing (2.1) to (2.4), we easily form an integral equation to determine the contact press- 
ure. Let us write this equation in the form (2.1) with a kernel such as (2.2). wherein 

L (a) = + [ U2 (R12 - 1) - 2 (I- Y)]_t + & [ u2 (1 - 52.22) + 2 (1 - Y*)]-l 

A* = ‘/r E*(l - v*r)-‘, r = A* (A + A*)-‘E (3.2) 
For small t the kernel K(t) of the problem under consideration may be represented in the 

form (2.8), just as is done in Section 2. If we, henceforth, put v = V+ = 0.3 the coefficients 
of the asymptotic expansion (2.8) will then be 

ad, = - 0.628p* + 0.628p, ali = - 0.642p* - 0.482~ 

azl = -0.38Op* + 0.520~~ ax0 = - 0.552p* - 0.459y 

as1 = 1.5Olp* - 0.336l.1, p* = A* (A + A*)-‘, p = A (A + A*)-l 

For known coefficients o 
(1.14) to (1.18). These forum as simplify significantly but just for one particular, practical- ‘1 

the solution of the problem will be determined, as before, by 

ly important, case. Nanely, let us put A* = A then 
IL* _ p = l/laud,r,, -= 0. a,t = - 0.562, a2t = 0.070, as,-, = -- 0.506, ax1 = 0.582 

Taking account of the coefficient oto 
with (1.14) to (1.18). as 

vanishing, we obtain the solution in conformity 

o (;L.) z-Y Q @a)-‘{I 4 A-” (YL ot, $- 0x1) (1-2x3) - u&-2 In 2h (1-2 r2) + 

-! n-yli-s (tin,, (I _1- 2.9) S1 (I) + 9a,,S, (x) + B/3 a,, + 0 (h-‘j, Q = aP 

nfl 1’ ’ III I!h ]l - cc,&-” i- 0 (A4)] + am + (as1 + ali) km2 + l.442a21 hTS + 0 (h-a) 

‘I (3) o (: I (I) (I (a2 - z2)-I”, 6 = AE /2a (3.3) 

Approximate solutions of the problem obtained by the method of [4] for the previously 
assigned conditions E = EC, Y = V* = 0.3 are 
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(h -z 2) w (s) = 8 (1.062 - 0.294 P + 0.0176 z+) 

(A = 4) o (z) = B (0.643 - 0.0712 x2 - O.OOi60 23) (3.4) 

Given for comparison in Table I arc results of compntetions utilizing (3.3) and (3.4). It 
is seen from tbese data that, as in the prcvfone problems, (3.3) may reliably be utilized in 
engineering analyses if A >, 2 

For convenience of practical utilization of the results obtained herein, valnee of the 
functiona S&x) (i = 1, 2, 3, 4, 5), defined by (LlS), arc given in Table 2. 

Table 2 

S,(X) 

0.8320 
0.8178 
0.7750 

-0.1805 

z%’ . 

s*2(.x) 

0.4356 
0.4276 
0.403Q 
0.3650 
0.3127 
0.2487 

8%? 
0:2945.10-l 

-0.2245.10-’ 
O.OW 

SSCX) 

-1.628 
-1.578 
--1.429 
--1.192 

S.(x) 

2.333 
1.293 
1.175 
0.9843 
0.7286 
0.421% 
0.8110.10-’ 

+ 0.2661 

I x.8;;: 

- 016667 

s*.w 

0.6065 
0.5898 
0.5403 

EE 
0:2260 

-0.8l.70.10- 

The authors arc grateful to 1.1. Vorovich for his attention to this work. 

BIBLIOGRAPHY 

1. AiaLsandrov, V.M., On the approximate solution of a certain type of integral equation. 
PMM. Vol. 26. No. 5. 1962. 

2. Pykhteev, G.N.,- On the evaluation of certain singular iutegrsls with a kernel of the 
Cauoby type. PMM, Vol. 23, No. 6, 1959. 

3. Vorouin, T.A., Contact stresses occurring during close fitting of a stiff bushing on an 
infinite cylinder. Izv. Akad, Nauk. SSSR, OTN, No. 8, 1957. 

4. Alcksandrov, V.M., Axisymmctric contact problem for an elastic infinite cylinder. Xzv. 
Akad Nauk SSSR, OTN, Mekh. i Mashin. No. 5, 1962. 

5. IUlcksaudrov, V.M., On interaction between an elastic belt and an infinite elastic cyl- 
inder. Nanchnyc Soobsbeh. 1962 (Se&a toobn. i csttstv. nauk) Rostov Univ. Press, 
1963. 

Translated by M.D.F. 


