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A special class of integral equations of the first kind with irregular difference kernel of
complex stracture dependent on a nondimensional parameter A is considered. The asympte-
tic solution of this integral equation is constructed for large values of A as a double series
in powers of A" and In A.

The obtained results are utilized to study axisymmetric problems of the interaction bet-
ween a stiff belt and the surface of an infinite elastic cylinder, as well aa the interaction
between a stiff bushing and the surface of an infinite cylindrical cavity in elastic space.

Finally, under the customary assumptions of Hertz theory, the problem of interaction bet-
ween an elastic belt and infinite elastic cylinder is examined on the basis of the solution
of the first two problems.

1. Investigation of the structure of the solution of the integral
egquation and construction of the asymptotic solution for large val-
ues of the parameter A. Let us consider an integral Eq. of the form

1
|z —¢| |z—12] z—1

Vi e e e p (et =m0 (el < @D

~1

F)=Inlyl Fr(y)+ly| Fa (v) + Fs (v) (1.2)

The functions F, (y) will be continuous with all their derivatives for all values — 2/A g
Ly ={x - t)/AK 2/A and will behave as O(y2) fory -+ 0.

Hence it follows that the function F (y) € H %~ 1, 1), 0 <q < ) where H_ *(— 3, ) de-
notes the space of functions whose n-th derivative satisfies the Hglder condition with ex-
ponent a for |x] < B.

We shall moreover assume that f(x) SH, X~ 1, 1),a>0,p> L.

L gollowing [1], let us represent (1.1) as an equivalent integral equation of the second
in
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The quantity P is determined either from the condition of compliance with the solution

of (1.1) found from (1.3), or equivalently, by means of the Formula[1]:

1 1 1 (1.4)
1 - f(t)dt 1y o@de ([ |I—2] t—zx dt
P:1nZA—f—a30{§l V']__._fz—_n—§1 Vm;-s-Ll:aao % -{-1"( % )]———W—_?}
wherein )
A o (L)
P = )4 7—1——t; dt (1.5)

Now, let us prove that if the solution of {1.1) in the class L (- 1, 1) exists then the
function @ (x) € C (- 1, 1) holds for any value of AE (0, o). To do this, it is evidently
sufficient to prove that the integral operator in the right-hand side of (1.3) operates from the
space C (-1, 1) into C i,-— 1, D.

It has been shown in [1] that the integral

1 -
J(z)zs%—_jdtecm(—i,i), ecan (1) E Hp® (—1,1), a>0 (1.6)

-1
On this basis, we may conclude that
1 . A | 1.7
I — . e - t —
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J, J Vi—y

if the above-mentioned properties of the functions f(x) and F (¢) are taken into account, and
it is also assumed that @{¢) &C (— 1, 1). Hence, it remains to be shown that
L

S Vi—=e g o (y)

dt\ sgn(t —y) ——=dy EC(—1,1) (1.8)
t—2x — 2
J J Vi—y
ifwlyye&C (-1, 1). To do this, let us rewrite the inner integral in {1.8) as
t 1
) C_9@)
N(t):zs ——dy——s ey (1.9)
J Vi—y Vi—y
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Evidently
N(@t) =20() (1 — A

which means that
N () € Hy* (—1,1),&0 =1y

Hence, the validity of the condition (1.8) follows on the basis of (1.6). It has therefore
been proved thata)(x{E'C (-1,1).

Let us turn to the construction of an asymptotic solution of the integral Eq. (1.1) for
large A, or equivalently, of (1.3). Let us expand the functions F;(¢) (i = 1, 2, 3), in (1.2), in
power series in the neighborhood of ¢t = 0 thus:

Fi(ty=a, +a,tt +a,tt+. .. (1.10)

Let the radii of convergence of these series be p;, respectively. Then all that follows,
based on (1.10), will have meaning at least for

A> 2/ Inf p; (1.11)

Let us substitute F; (¢) in the form (1.10) into (1.2), and then (1.2) into (1.3). Let us seek
the solution of (1.3) as

o] 0
@(@) = D] 0 (@A™ ™A (1.12)
Mm=0 n=0
Substituting (1.12) into (1.3) and equating terms on the right- and left-hand sides, which
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are of identical powers in A1 and In), we obtain expressions for @, ,(x) for all a > [m /2]
(here [y] is the integer part of y) as follows

P fnyi—e Vi—tz
O () = — —¢ S —= (1.13)
-1

ng yi—e “‘5 om(¥)sgn(t—7) _

0 (7) = % -z % Vi—t
1 ! {12
(0 (%) = FS 5 sz [(t —t)(2anlntt—1 | 285 + an) 0o (1) +
-1 -1

d
+ ag sgn (! — 1) oy (1)] -V_T—:t-?;

1
o (z) = — 2““5 yi=@ sz t—Dow(® .0

o
n? 4 t—zx 9 Vi—1t
1
Oy = 77 Ve’i—_;:t S {[2an (¢ — %) In |t — 7| + (au + 2am) (¢ — 7)) 01 (7) +
e bt

dr
+ am sgn (L —T) 0 (¥) + Jaw (¢ —¥)* 50 (1 — T) 0og (N ra=7

§ ! Yi—n g
g (T) —= -;&-*S —TE;-‘ dt S [—2au(t—T)®10(T) +
-1 -1

+ ag sgn (t — 1) wp

dt
(V] V——i_—-— _‘12 ete.

Let us limit ourselves to the considerdtion of the important particular case f{x) =8 =
= const. Successively evaluating the quadratures in (1.13), we will have
Wop (z) = n-! P, Wye (1‘) S 4H‘3a20PSI (2‘)

(1.14)
Wyo (2) = 1P [(ayy (¥, — 1n2) -+ ag) (12 2%) | 32a~4a2¥S, (7) — D)
01 (z) = —n~! Payy (1—227%), g (T} = —2n73apass, (2)
W30 (2) = Pr3{%/gayy6558s (2) + [Bay (1 + 22%) — 128n~%as® D] Sy (z) +
Here (%) + [9as + 2 (a1 (/2 — 102) + aspag,] Sy (2) + ¥gag -+ 64m-tas® S5 (2)}

Sifry=(1—22%) 42 Vi— xZZ sin {{2k 4- 1) arc cos z]

. - (1.15)
LT kD
a o 4k
Sa(x)=(1—$g)2 (5?1‘_"‘%; D:g] zm—__—i)’g:().’w%
=1

2% +3
Sy(2) = — (1 — 209 + 144V T — a3 2 (H‘SL“ i() Z (z;:+) ;‘;"(Ezsjls)a

1 t
1 1— © YI—B Sy (¥) dt
i@ =+ —2 Frl -, SE@=) e 2O
-1 0
U2k+2 (x) = —2 (1 — 232) ng (:C) + 16k / (4}»2 — 1) _— Uzﬁ....z(x)
—

Uo(z) =0, Upg{z) =4+ 2xln —— 1+x

*) The series in the expression for S,(x) are tabulated in [21.
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Therefore, an asymptotic solution of the form (1.12) to O(A"*) accuracy has been ob-
tained for the case f{x)= 3.

The series in (1.15) may be tabulated with respect to x once and forever. As computa-
tions with an error not exceeding 0.7% have shown, the function 5, (x) may be replaced for
all x& [~ 1, 1] by Expreasion:

Sy* (2) = (0.4356 +0.1321 22 + 0.2494 z In -:——1—}) (1 —2?) (1.16)

It should be noted that by thus approximating S, (x} we do not alter the character of its
structure because, as is easily seen, the function S,(x) has the form

{—z
[fl (x) +12(z)1n TTF?]“ —a2?)

Here f;(x) and f,(x) are continuous functions for xE [-1, 1]. Using (1.16), we obtain
the following approximate expression for S4(x):

S5* (x) = 0.3547 — 0.8463 22 10+ 0.3442 2¢ + 2 (1 — 2?) In

{1 —2x
1Trz 10 + 0.3026.5, (=)

Finally, utilizing (1.4) and (1.14) to (1.17), we obtain for P for the case f(x) = 81
6P = In2A [1 --.anl"z + 0.1801 au_agox’*a + 0 (A-.‘)] + L% + 0.8106aml"‘" +
+ ((131 + ayy — 0<03287 (1202)&_2 + (l, 18)

+ {1442 ay —0,2702 ay0 — 01807  ag05 — 0.02450 a.%) A3+ 0 (A%

2. Axisymmetric contact problems for an infinite circular elastic
cylinder and an elastic space with an infinite circular cylindrical
cavity. Let us consider the problem of interaction between a stiff belt and the surface of
a cylinder, and between a stiff bushing and the surface of a cavity. Let us assume friction-
al forces are absent in the contact domain, and a load absent outside the contact domain,

By operational calculus methods the problems mentioned may be reduced to the determin-
ation of the contact pressures ¢(z) from the integral equation [3 to 5]

iq(r)K(’;z )dt':ﬂAT (‘Azlj/:g(_l -v2)‘1) (2.1)

11—z
1-+= x

(1.17)

X (0.1180 +- 0.03305 %) — 0.04156 (1— 2?)? In?

Here a is half the belt or bushing width, R the radius of the cylinder or cavity, y is the
value of penetration of the belt or bushing into the surface of the cylinder or the cavity. The
kemel K{t) has the fom

oo
L —
K (1) -:S f:‘) cos ut du (z - ) (2.2)
0
for the problem (a) of interaction between a belt and the surface of a cylinder
Lw=[u(Q?—1)—2(01 — v (Q(w =Ty /I (w)y (2.3
for the problem (&) of interaction between a bushing and a cavity surface
Lw)=1[(1 —-Q)+2(1—'u (Q (u) = Ko (W) /Ky (w))  (2.4)

Here J, (u), ,(u) and K, (u), K ,(u) are the Weber and Macdonald functions.
It is easy to see that e functions L (u) defined by (2.3) and (2.4) for large values, may
also be represented by the following asymptotic expansions:
L(u) =1 4 qut 4 cou~? | cqu® -} O (u¥) (2.5
Let us present the values of the constants ¢, for % = 0.3
For problem (a}
6 = 0.4000, ¢4 = —1.285, ¢, = —1.452
For problem (5)
6 = —0,4000 ¢4 =—0,965 ;= 1.986
Now if the integrals
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[} o

© cosut —e v S - sinut
»-ln{tf.-.:s——-u—'—“_—du, ngntzﬁs du (2.6)
[ 0
are used, then the kemel K(z}) may be represented as:
K(t)=—ln|tj—Yamc|t] 4 Yscat? In|t] —3facat® + Taases | 1| -
?
+§ {{usL(u) — uB — gqu® — cai — €3] €OS Ut | ude Y - cyut — (2.7)
0

1 1 du
— Cgu (T ultieTu — 'l) — &3 (-—2— ut? — 1)} w5
We hence obtain the following asymptotic representation for the kernel K(¢2) for small ¢
{or equivalendy, for large A = R/a):

K (1) = — Injt] + agol t| 4 ag0 + ant® 10| ] + agt® + anjt [ (2.8)
Here
n ¢ CL(u)—14eu
n —_
ap == -5~ 0y 4= Ta’ @z =5 €3, G f:S ———"u—"—*du
0
(2}
-2 AN e 2], ; cuyy 3%
a=—"j" Gty 0[*‘ — WL () e e (1 —e™)] — (2.9)
Calculations yield
For problem (a) (v = 0.3)
Byg = — 0.628, ayy = — 0.642, agy = — 0.380, Qg == —0.552, Qg = 1.504
For problem (3)
gy = 0-628, a5 = — 0-482. Qg — 0-520, 1130 = — 0.4591 gy = — 0~336
Let us interchange the variables in (2.1), and let us introduce the notation:
T—at, z=—az, gqfa)=0¢(), Ayle=28 (2.10)

Then taking (2.8) into account, (2.1) takes the form (1.1), (1.2) and (1.10).
Thus it follows that the asymptotic solution, for large A, of the considered contact prob-
lems is given by {1.14) to (1.18). It should still be noted that

a

Qm 3 q(t)dE P Y (2.11)

To verify the results obtained herein, and to elucidate the limits of their application,
approximate solutions of the considered contact problems were obtained fory=0,3 by a
method expounded in fé]:

For problem (a)

* =2 o) =0(1.229 — 0.4212% | 00904 %)

(A=4) o (x)=0/(0.688 — 0.0847 «* -1 0.0243 u*) (2.12)
For problem {3}

(=2 o) =0>(0.931 — 0,182 22 — 0.0517 z%)

(A =4) o (x) =8 (0.605 — 0,0634a% — 0.0213 24) (2.13)

Given for comparisonin Table 1 are some results of computations utilizing (1.14) to
(1.18) and {2.13), (2. 12). Judging by the data presented, the approximate solution obtained
herein

3 [if2]
()= ) D} o (@) A7 A 4+ 0 (9 (2.14)
=0 j=0
ields good results for the considered contact problems for all values of the parameter A €
E,2, o). The greatest discrepancy, reaching 5%, is observed for A = 2.
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Table 1
, @(0)5-1 @(0,5)8-1 ‘ w(1)8—1 l P(n8)~1

A | 2 [ 4 2 4 | 2 | 4 2 | 4
(1.14)—(1.18) 1.075 0.686 1.075 {0.667 10.923 10.627 [1.038]0.653

a (2.12) 1.229 0.688 1.129 ]0.668 |0.898 | 0.628 |1.0530.655
b (1.14)—(1.18) 0.988 0.603 0.888 [0.586 |0.666 [ 0.520 {0.803 | 0.565
(2.13) 0.931 0.605 0.882 10.588 10.697 |0.520 |0.821 [ 0.565

3.3) 1.026 0.642 0.961 |0.624 {0.762 {0.571 ]0.894|0.606

¢ (3.4) 1062 | 0.643 | 0.990 |0.625 |0.786 {0.570 |0.922 |0.607

3. Axisymmetric problem of interaction between an elastic belt
and an infinite elastic circular cylinder. Let us consider the problem of in-
teraction between an elastic belt of radius R* and the surface of an elastic cylinder of ra-
dius R = R* + &(¢ /R < 1). Let the elastic constants of the belt and the cylinder be E, v
and E*, v*, respectively. We assume’ that there are no friction forces between the surfaces
of the belt and the cylinder, and the cylinder surface is not loaded outside the belt. The
condition for contact between the belt and cylinder may evidently be written as

u (R, z) — u (R*, 1) = — &, [zl < a (3.1)
where u(R, 2) is the radial displacement of points of the cylinder surface, u(R*, z) the ra-
dial displacement of point of the belt surface, and a is half the belt width, In the contact
domain |z| £ o an unknown contact pressure g(z) acts. Let us formulate the problem of de-
termining this pressure.

Now, as is done in the wellkn own Hertz theory of contact between two elastic bodies,
let us assume that the radial displacements of the belt surface due to the pressure ¢(z) may
be approximated with sufficient accuracy by radial displacements of the surface of an infin-
ite cylindrical cavity of radius R in an elastic space due to the same pressure. Then, by
utilizing (2.1) to (2.4), we easily form an integral equation to determine the contact press-
ure. Let us write this equation in the form (2.1) with a kernel such as (2.2), wherein

Aa -1 Au -1
L) =73 a+ Q= 1) =20 —V)] + 73z [ (1 - +2(1 —v*)]

A% =1/ E¥(1 — vy, T=A%(A+ A% (3.2)

For small ¢ the kernel K{) of the problem under consideration may be represented in the
form (2.8), just as is done in Section 2. If we, henceforth, put v = v* = 0.3 the coefficients
of the asymptotic expansion (2.8) will then be

az = — 0.628u* - 0.628, a;; = — 0.642u* — 0.482p
ay = —0.380p* -+ 0.520p, az = — 0.552u* — 0.459u
a5 = 1.501u* — 0.336p, p* = A* (A 4 AY), p = A(A + A%

For known coefficients g, the solution of the problem will be determined, as before, by
(1.14) to (1.18). These formulas simplify significantly but just for one particular, practical-
ly important, case. Namely, let us put A* = A then

put == p == Ygand oy, = 0, ayy = — 0.562, ay = 0.070, agy = — 0.506, ag = 0.582

Taking account of the coefficient a,, vanishing, we obtain the solution in conformity
with (1.14) to (1.18), as
© (x) == Q (ma) {1 4 A (Vs ay 4 ay) (1—22%) — aj ;A2 1In 20 (12 2%

b fGay (1 4- 20%) 81 (x) 4 98518, (2) + 83 a5 + O (A4, Q =aP
nd P I 2 [ — A 4 O MY - age 4 (ag + ap) A2 41,4420, AP 4 O (AY)
¢g(z) w(z/a)a(a®— zz)_'/’, d = Ae/ 2a (3.3

Approximate solutions of the problem obtained by the method of [4] for the previously
assigned conditions £ = E*, v = 1* = 0.3 are
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(h .= 2) ® {z) = 8 {(1.062 — 0.294 2® 4 0.0176 %)
(A =4  ©(z)=6{0.643 — 0.0712 22 — 0.00160 =¥ (3.4

Given for comparison in Table 1 are results of computations utilizing (3.3) and (3.4). It
is seen from these data that, as in the previous problems, (3.3) may reliably be utilized in
engineering analyses if A3 2.

For convenience of practical utilization of the results obtained herein, values of the
functions 5,{x) (i = 1, 2, 3, 4, 5), defined by (1.15), are given in Table 2,

Table 2

= | Su(x) | sww | Sa(x) Sux) S
0 0.8320 0.4356 —1.628 1.333 0.6063
0.1 0-8178 0.4276 —1.578 1.293 0.5898
0.2 0.7750 0.4039 —1.429 1.475 0.5403
0.3 0.7029 (1.3650 --4.192 0.9843 0.4604
0.4 0.6003 0.3127 —0.8818 0.7286 0.3536
0.5 0.4650 0.2487 -0, 5087 0.421% 0.2260
0.6 0.2938 0.1765 —0.4098 0.8110-10t | —0.8470.10
0.7 0.8156.107! 0.1007 +0.2593 + 0.2661 —0.6830.10™1
0.8 —0.1805 0.2945-10! -0.6380 —0.5794 —0.2146
0.9 —0.51147 —0.2245-10-1 40,8267 —0.7903 —0.3458
1.0 —41.000 0.000 1.000 — 0.6667 —0.4500

The authors are grateful to I.I. Vorovich for his attention to this work.
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